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Abstract

A means of discriminating among species of clown anemonefishes, based on restriction enzyme analysis of
partial mitochondrial DNA sequences, was investigated. Mitochondrial 16S rRNA and cytochrome b genes from 6
species (7 strains) of anemonefish (Premnas biculeatus, Amphiprion polymnus, A. sandaracinos, A. perideraion, A.
ocellaris, A. ocellaris var. and A. percula) were PCR-amplified. A 623-bp portion of 16S rRNA gene was obtained
from different fishes using the same pair of primers. Further investigation of this 16S rRNA fragment, by restriction
endonuclease digestion with BfuCI and RsaI, was not able to distinguish all fishes studied, but did yield 3 different
digestion patterns. The first was specific to P. biculaetus, the sole member of the genus Premnas, while the remain-
ing two separated the Amphiprion species into 2 groups: 1) A. polymnas, A. sandaracinos and A. perideraion, and
2) A. ocellaris, A. ocellaris var. and A. percula. In contrast to this, restriction endonuclease digestion of a 786-bp
fragment of the cytochrome b gene with HinfI and RsaI, was able to differentiate different 7 anemonefishes. This
utility marker is valuable for unambiguous species/strain identification of juvenile anemonefishes.
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1. Introduction

Anemonefishes of the genus Amphiprion and
Premnas (Perciformes: Pomacentridae:  Amphipri-
oninae) are one of the most attractive marine orna-
mental fishes. Approximately 28 species have been
recorded in the warm waters of Indian and Pacific
Oceans, including Australia’s Great Barrier Reef
(Robertson, 1998). Typical classification and spe-
cies identification of anemonefishes are based on
morphological characteristics, such as tooth, shape,
scalation of head and body proportions (Allen and
Fautin, 1992). However, to distinguish anemone-
fishes in the field, colour pattern is the most impor-
tant feature. Identification of newly hatched fish
larvae to species level is often difficult, due to poorly
defined morphological characteristics and great dif-
fering juvenile morphology in comparison to the
adults (Fautin and Allen, 1997). In such cases mo-
lecular based taxonomy, particularly methods em-
ploying analysis of polymerase chains reaction
(PCR) amplified DNA fragments, can provide an
accurate alternative means of identification of indi-
viduals to genus, species or even strain level. This
approach has been widely applied in the study of
teleost fishes, because of the relative simplicity,
specificity and sensitivity of the technique. Often
sufficient diagnostic information can be obtained
from analysis of PCR amplicons digested with re-

striction enzymes, generating potentially discrimi-
natory restriction fragment length polymorphism
(PCR-RFLP) markers. PCR-RFLP analysis is
faster, more cost effective and more accessible
than the alternative of sequencing each PCR
amplicon.

Mitochondrial DNA (mtDNA) genetic markers
have been widely used as a tool to distinguish within
and among species (e.g. Patarnello et al., 1994;
Chirstian et al., 2000; Klossa et al., 2002; Moyses
and de Almeida, 2002; Aranishi et al., 2005, Hsieh
et al., 2007; and references therein). MtDNA se-
quences are almost exclusively maternally inher-
ited (Gyllensten et al., 1985) and the rate of evolu-
tion of the mtDNA genome is considered to be ap-
proximately ten times greater than that of the
nuclear genome (Brown et al., 1979). In this study
the use of PCR-RFLP analysis of two mitochon-
drial gene fragments to distinguish among six spe-
cies (two genera) of anemonefish is investigated.

2. Materials and methods

2.1 Fish samples

Four different anemonefish species (5 strains)
comprising P. biaculeatus, A. sandaracinos, A.
ocellaris, A. ocellaris var., and A. percula were
gifted from Percula Farm, Chonburi, Thailand. These
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fishes were originally purchased from overseas and
bred at the farm. An additional two species, A.
polymnus and A. perideraion, were wild-caught of
the Samaesan Islands, Chonburi, Thailand. Details of
all fishes used in this study are listed in Table 1. Each
species was represented by at least 3 fish. A small fin
clip was obtained from each fish and preserved in
100% ethanol, which was stored at 4 °C until further
analysis.

2.2 DNA extraction

Total genomic DNA was extracted from each
sample using a ‘PCR-ready’ genomic DNA isolation
method described by Meeker et al. (2007). In brief,
tissue (about 2 mg) was placed into a microtube
containing 100 µl of 50 mM NaOH and heated at 95°C
for 30 min. After cooling to 4°C, one tenth volume of
1 M Tris-HCl, pH 8.0 was added. The sample was
centrifuged at 12,000 rpm for 5 min. A 5-µl aliquot of
supernatant was used in subsequent PCR reactions.

2.3 PCR primers and amplification

PCR of the 16S rRNA gene utilised universal
primers, 16Sar-L (5'-CGCCTGTTTATCAAAAACAT) and
16Sar-H (5’-CCGGTCTGAACTCAGATCACGT),
previously reported to generate a 16S rRNA gene
fragment in various fish species (Palumbi et al., 1991).
Specific cytochrome b gene primers, Apocyt_L2 (5’-
GACCATAAACGATGCCGACT) and Apocyt_R2 (5’-
GACCATAAACGATGCCGACT) were designed from a
published sequence for saddleback clownfish (A.
polymnus; GenBank accession number DQ343960)
using primer3 program (Rozen and Skaletsky, 2000).
These two primer pairs were used separately in PCRs
with template genomic DNA from all fish species.
Standard PCRs were performed in a total volume of
20 µl containing approximately 50 ng of template DNA,
10 pmol of each primer, 200 µM dNTPs, 1.5 mM
MgCl

2
, 1x buffer plus Q-solution (Qiagen Inc.,

Germany), and 0.15 U of Taq polymerase (QiaGen
Inc.). The PCR amplifications were carried out in a

T-Personal Thermal Cycler (Biometra, Germany). For
amplification of the 16S rRNA gene, the samples were
denatured at 94°C for 3 min, followed by 35 cycles of
94°C for 45 s, 56°C for 30 s, and 72°C for 40 s, with
a final 10 min at 72°C on the last cycle. For
amplification of the cytochrome b gene, the samples
were denatured at 94°C for 3 min, followed by 35
cycles of 94°C for 45 s, 55°C for 30 s, and 72°C for
50 s, with a final 10 min at 72°C.

Four microlitres of each PCR reaction were
evaluated by electrophoresis through 1% SeaKem®
LE Agarose (Cambrex Corp., USA) containing 0.5
μg ml-1 ethidium bromide in 0.5x Tris borate EDTA
(TBE) buffer. The electrophoresis was performed at
50 V for 45 min and DNA bands were visualized and
photographed under UV illumination.

2.4. RFLP pattern analysis

In order to produce potentially informative RFLP
patterns an in silico restriction endonuclease (RE)
analysis of published sequences (GenBank accession
numbers AP006017, DQ343962 and AY208518) using
Webcutter 2.0 software was undertaken. Restriction
digestion of the PCR products of the 16S rRNA and
cytochrome b genes were carried out individually in a
20-µl reaction mixture containing 1x enzyme buffer
(New England Biolabs, Germany), 8 µl of unpurified
PCR product and 5 units of each enzyme (New
England Biolabs). The reaction was then incubated at
37 °C for 2 hrs. The entire reaction (20 µl) was
separated through 2.0 % SeaKem® LE Agarose
(Cambrex) and visualized as mentioned above. To
verify the patterns obtained, all restriction analyses
were performed at least twice. A double digestion with
BfuCI and RsaI was selected for 16S rRNA
amplicons, predicted to give eight fragments in A.
ocellaris (16, 18, 59, 67, 87, 87, 105, 184 bp).  A similar
RE double digestion (HinfI and RsaI) was selected to
fragment the cytochrome b amplicons, predicted to
produce species specific patterns between A.
sandaracinos (7, 11, 22, 42, 53, 108, 195, 286 bp) and
A. perideraion (11, 22, 42, 53, 62, 161, 195, 233 bp).

Table 1. Details of anemonefishes used in this study  

Common name n Scientific name Distribution (Allen, 1980) 
Spine-cheek anemonefish  
 

Saddleback anemonefish 
 

Orange anemonefish 
 
 

Pink anemonefish 
 

False percula clown anemonefish 
 
 

Black percula clown anemonefish 
 

Percula clown anemonefish 

3 
 

5 
 

4 
 
 

3 
 

3 
 
 

3 
 

3 

Premnas  biaculeatus Bloch, 1790  
 

Amphiprion polymnus Linnaeus, 1758 
 

A. sandaracinos Allen, 1972 
 
 

A. perideraion Bleeker, 1855  
 

A. ocellaris Cuvier, 1830 
 
 

A. ocellaris var. Cuvier, 1853 
 

A. percula Lacepéde, 1802 

Indo-Australian Archipelago 
 

Indo-Australian Archipelago 
  

Northern Melanesia, Philippines, Taiwan, and 
Ryukyu Islands 
 

Western Pacific and Indo-Australian Archipelago 
 

Eastern Indian Ocean, Indonesia, Malaysia, 
Philippines, and east coast of Asia to southern Japan  
 

Vicinity of Darwin, Australia 
 

Melanesia and Queensland 
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3. Results and Discussion

Two gene regions of mitochondrial DNA from 7
anemonefishes were selected as potential species
diagnostic markers. Analysis of the full length
amplicons provided no discriminatory power, the size
of the PCR products (c. 623 bp for 16S rRNA and c.
786 bp for cytochrome b) being indistinguishable
among samples by the gel electrophoretic screening
method employed [Fig.1(a) and (b)]. Therefore, further
searching for appropriate restriction enzymes to
differentiate the PCR products was carried out.
Double digestion of 16S rRNA amplicons with
BfuCI+RsaI produced three different RFLP patterns
that were consistent among individuals (3-5) within
each species/strain examined. Thus, all individuals
from A. ocellaris, A. ocellaris var. and A. percula
(Fig. 2; lanes 5, 6 and 7, respectively) had the same
profile, A. polymnus, A. sandaracinos and A.
perideraion (Fig. 2; lanes 2, 3 and 4, respectively)
displayed a second profile, while the remaining pattern
was specific to the genus Premnas (all P. biaculaetus
samples; Fig. 2; lanes 1). PCR-RFLP analysis of the
cytochrome b amplicons proved to be much more
discriminatory with each species producing an
apparently different diagnostic pattern (Fig. 3). Again,
within each species/strain all individuals exhibited the
same RFLP profile.

This preliminary analysis has identified two PCR-
RFLP analyses that should prove useful for
distinguishing among anemonefish at the genus and
species level, and possibly even strains within species.
It must be recognised, however, that the number of
individuals examined per species was low. The extent
of polymorphism within species is yet to be established,
and if found to be present, may reduce the
discriminatory power observed in this study. Any loss
in discriminatory power may possibly be countered
by additional RFLP assays with different restriction
enzyme combinations.

Based on 16S rRNA amplicon PCR-RFLP
comparisons, the genus Premnas was clearly split from
the genus Amphiprion fishes, in accordance with their
morphological differences (Elliott et al., 1999). Within
the Amphiprion species, the false percula clownfish
(A. ocellaris) and the true percula clownfish (A.
percula) shared an identical digestion profile. This
suggests that they are closely-related species and,
indeed, they can only be distinguished morphologically
by the presence of diagnostic black vertical stripes
presented in adult of A. percula (Fautin and Allen,
1997). The results of the present investigation agree
with previous studies based on mtDNA analysis, where
the true and false clownfishes were placed into the
same Clade (Elliott et al., 1999; Santini and Polacco,
2006). The grouping of A. polymnus, A. sandaracinos
and A. perideraion together, based on 16S rRNA
PCR-RFLP screening also in agreement with the
findings of Santini and Polacco (2006), which was
based on the analysis of nucleotide sequences from
three parts of the mitochondrial genome (D-loop
segment, cytochrome b and 16S rRNA genes).

The RFLP patterns produced from HinfI+RsaI
digestion of the cytochrome b amplicons proved to be
more discriminatory. This may partly reflect the larger
size of this amplicon (768 bp vs. 623 bp for 16S rRNA).
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Figure 1. PCR amplified products of mitochondrial 16S rRNA
(a) and Cytochrome b (b) gene fragment from different
anemonefish species. Lanes 1-7 are Premnas biaculeatus,
Amphiprion polymnus, A. sandaracinos, A. perideraion, A.
ocellaris, A. ocellaris var. and A. percula, respectively. Lanes
C and M are negative (no-DNA) PCR-amplified control and
100bp DNA marker, respectively.
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Figure 2. PCR-RFLP patterns of a mitochondrial 16S rRNA gene
fragment double digested with BfuCI+RsaI from different
anemonefish species (a) and illustrated in a diagram (b). Lanes 1-
7 are  Premnas biaculeatus, Amphiprion polymnus, A.
sandaracinos, A. perideraion,  A. ocellaris, A. ocellaris var. and
A. percula, respectively. Lanes 8 and M are undigested 16S rRNA
amplified products and 100bp DNA marker, respectively.
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Figure 3. PCR-RFLP patterns of a mitochondrial cytochrome b
gene fragment double digested with HinfI+RsaI from different
anemonefish species (a) and illustrated in a diagram (b). Lanes 1-
7 are  Premnas biaculeatus, Amphiprion polymnus, A.
sandaracinos, A. perideraion, A. ocellaris, A. ocellaris var. and
A. percula, respectively. Lane 8 is undigested cytochrome b am-
plified products. Lanes m and M are Low molecular weight and
100bp DNA markers, respectively.
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The cytochrome b gene region is known to exhibit a
relatively high mutation rate within the mitochondrial
genome (Saccone et al., 2000) and this high level of
polymorphism has been used to discriminate among
closely related fish species (Lindstrom, 1999; Aranishi
et al., 2005). The reliable and repeatable PCR-RFLP
method as outlined above does not require costly
nucleotide sequencing and all experimental analysis
can be completed less than 4 hours from fish tissue
sampling through to scoring RFLP profiles.
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